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DYSPHONIA & INTELLIGIBILITY

• Lack of intelligibility in noisy 
environment is the primary 
complaint of many patients 
with dysphonia. (Jacobson et 
al., 1997)

• What aspects of dysphonic 
speech causes the reduction 
in intelligibility?



WHAT IS SPEECH?
Source-Filter model

• Sound energy source (e.g. the 
vocal fold vibration) 

• Filtered according to a 
resonance characteristics 
determined by the shape of 
the supralaryngeal vocal tract.

From: 
http://www.animations.physics.unsw.edu.au/jw/speech.html



WHAT DO WE NEED IN SIGNAL 
FOR DECODING SPEECH?
How do we find “information” in a speech 
signal?
• The human perception system attends and responds 

to a change in a signal.  

• The auditory system needs a change in signal that is 
strong enough for it to respond.

• The decision on whether the change in signal 
contains linguistically meaningful information (i.e. 
phonetic feature) is made by the subsequent systems. 



LARYNGEAL PATHOLOGY & 
SOURCE PRODUCTION

• Increase in noise
• Decrease in harmonic power

Change in vibratory characteristics of the 
vocal folds and glottic closure 

Information important for speech 
perception is obscured



• Acoustic studies of  voice have focused 
on determining acoustic correlates of : 

• perceptual judgment of voice quality 
(Kreiman et al., 1993; Yumoto, Sasaki, & Okamura, 1984; 
Wolfe & Martin, 1997, etc.) 

• vibratory nature of the vocal folds (Mehta, 
Zañartu, Quatieri, Deliyski, & Hillman, 2011)

ACOUSTIC TOOLS FOR DYSPHONIA 
EVALUATION



THE CLINICAL NEEDS

• Current algorithms are not designed to study aspects 
of signal that are relevant to intelligibility.

• Such speech analysis can be highly laborious and 
time-consuming – implementation of automatic tool 
would be helpful.



LANDMARK ANALYSIS 
PROVIDES NEW INSIGHTS
• The acoustic region with 

the abrupt change 
contains information that is 
particularly salient to 
listeners for making a 
decision about speech 
sound. � LANDMARKS

(Stevens, 2000, 2002)

• Designed for automatic 
speech analysis

Landmark analysis by SpeechMark®  



Landmarks

• Follows the tradition of distinctive features (Jakobson, 
1928; Chomsky & Halle, 1968)

• SpeechMark®: 6 consonantal and 1 vowel landmarks

• “glottis” ([+g] and [-g])
• “burst” ([+b] and [-b])
• “syllabicity” ([+s] and [-s])
• “voiced frication” ([+v] and [-v])
• “frication” ([+f] and [-f])
• vowel landmark ([V]). 

LANDMARK ANALYSIS 
PROVIDES NEW INSIGHTS

[+]: onset
[-]: offset



LANDMARK ANALYSIS 
PROVIDES NEW INSIGHTS
Past LM studies:
• “Clear” vs. “casual” speech: Greater number of 

LMs found in clear speech. (Boyce et al., 2013)

• “Dysarthric” vs. “normal” speech: Deletion of 
expected LMs and insertion of unexpected LMs 
found in dysarthric speech. (Dicicco & Patel, 
2008)

• “Parkinson’s” vs. “normal” speech: Parkinson 
group had a reduced LM cluster rate (Boyce, Fell, 
Wilde & MacAuslan, 2011) 



CAN LM ANALYSIS 
DIFFERENTIATE DYSPHONIC 

SPEECH FROM NORMAL 
SPEECH?



Materials: 

• 33 dysphonic & 36 
normal speakers 

• Moderate to severe 
dysphonia

• The 1st sentence of the 
Rainbow passage (Kay 
Disordered Voice Database)

Measure: 
• Count of LMs

Statistical methods: 
• Logistic regression

• Classification tree

• Response variables: 

• Vocal status (normal vs. 
disordered)

• Predictor variables: 

• Count of each LM, vowel 
area

METHODS



RESULTS

100,000 Logistic 
regression model 
[-b] is a 
significant 
predictor for 
dysphonia (p = 
0.045)



Dysphonic
24 dysphonic 

0 normal

Normal
9 dysphonic 
& 36 normal 

33 dysphonic & 36 normal speakers

Dysphonic
6 dysphonic 

2 normal

Normal
3 dysphonic 
34 normal

[+s] < 7.5

[+b] ≥ 9.5

Misclassification Rate: 
5/69 = 7.24%

RESULTS



Difference in underlying physiology may be reflecte d 
in the speech signal.

Participants
• 36  normal speakers (15 females, 21 males)
• 33 dysphonic speakers

• VF paralysis (8 females, 8 males)
• VF mass: VF polyp (5 females, 4 males); VF nodules (8 female)

Response variables
• Laryngeal diagnosis (normal vs. VF paralysis vs. VF mass)

Predictors/Independent variables
• Count of each LM, vowel area

CAN LM ANALYSIS DETECT 
UNDERLYING PATHOLOGIES?





Multinomial regression model
• [+b] and [-b] are significant 

predictors for VF paralysis 
(p < 0.05)

• None of the predictors were 
significant for VF mass



Normal
36 Normal, 1 Paralysis, 

8 Mass

Paralysis
0 Normal, 15 Paralysis, 

9 Mass

36 Normal, 16 Paralysis, 17 Mass

Paralysis
0 Normal/

12 Paralysis/
2 Mass

Mass
0 Normal/

3 Paralysis/
7 Mass

[+s] ≥ 7.5

[+s] ≤ 2.5

Misclassification Rate: 10/69 = 14.49%

Normal
34 Normal/
1 Paralysis/

2 Mass

Mass
2 Normal/

0 Paralysis/
6 Mass

[+b] ≤ 9.5

RESULTS



• Based on LM count from 1 sentence, LM analysis is 
a useful method to detect acoustical differences 
between normal and dysphonic speech. 

• LM analysis is less effective for detecting differe nce 
between underlying pathologies � Not surprising

• Burst and syllabicity LMs are significant predictor s 
of dysphonic speech

• Greater number of [+/-b] : more frequent onset/offset 
in VF vibration?

• Reduced number of [+/-s]: inability to create abrupt 
change in voiced regions (lack of sonorancy)

CONCLUSIONS



• Detection of syllabic structure is important for 
speech perception. (Healy, 1976; Mehler et al., 1981)

• Is a signal of dysphonic speech degraded enough to 
disturb detection of syllable structure by listener s? 

• SpeechMark® summarizes LMs based on sequences 
of 6 LM types ([+/-g], [+/-b], [+/-s])

• Syllabic cluster – Group of LMs defined by a few 
acoustic rules that are based on physiological natu re 
of human speech production (i.e. phonetically 
possible patterns in English). 

SYLLABIC CLUSTER ANALYSIS



• “Syllable” in LM analysis

• Acoustic definition of what syllable looks like
• What was uttered ≠ what was supposed to be uttered

Example: “interesting” 
• /ɪntərɛstɪŋ/ – 4 syllables in canonical form
• /ɪnrɛstɪŋ/  – 3 syllables, reduced complexity 

SYLLABIC CLUSTER ANALYSIS



Syllable Syllable Syllable SyllableSyllable Syllable Syllable

VoicingVoicingVoicingVoicingVoicing

Utterance



METHODS
Response variables: 
• Vocal status (Normal vs. Dysphonia) 
• Diagnoses (Normal vs. VF mass vs. VF paralysis)
Predictors: 
• Count of LMs
• # of “syllables” and “utterances” 
• # of LMs/syllable, # of syllables/utterance
• duration of utterances
• duration of voiced segments
Statistical models: Logistic regression, multinomia l 
regression



RESULTS: NORMAL VS DYSPHONIA



RESULTS: NORMAL VS VF MASS VS 
VF PARALYSIS



• Voiced interval was greater in dysphonic speech –
more frequent instance of unexpected vocal fold 
onset and offset occurred in unexpected moments

• Other parameters for syllabic cluster measure were 
not significant predictors for dysphonic speech.  T he 
analysis may have been affected by the wide 
variability seen in dysphonic group (especially VF 
paralysis group).

CONCLUSIONS



LIMITATIONS
• Variabilities among dysphonic speakers were large 
� larger sample size may be helpful. 

• The samples used for these studies are phonetically  
limited. May need more comprehensive speech 
samples for generalizable outcomes.

• A study with more linguistically comprehensive 
sample and larger number of speakers is underway.  
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